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LETTER TO THE EDITOR 

A new technique for deriving the large-N solution of 
the Klein-Gordon equation 

S S Stepanov and R S Tutik 
Depanment of Physics, Dniepropetrovsk State University, Dniepropetrovsk, SU-320625, 
Ukraine, USSR 

Received 15 February 1991 

Abstrmt. A new procedure for deriving the energy values of  the Klein-Gordon equation 
with a potential having both scalar and vector components is described. Using the h- 
expansion and the quantization condition recursion formulae were obtained which can 
readily be applied to any I/N-expansion scheme. These formulae have simple structures 
both for background and excited States and provide, in principle, the calculation of 
I/N.corrections up to an arbitrary order. Contrary to the methods elaborated formerly 

like form. For the Coulomb potential the solutions of the Klein-Gordon and shortened 
equations are compared. 

OUT iec‘lniq”e does not invoive converiing the ini;ia; equaiion ;o;:re 5horiened, SchrUdingei- 

The method of large-N expansion, where N is the number of spatial dimensions, has 
emerged in recent years as a very useful approximation scheme in non-relativistic 
quantum mechanics (for a review see e.g. Chatterjee (1990)). Several attempts have 
been made to extend this method to the relativistic case within the Klein-Gordon 
equation. In particular, Nieto (1979), Miramontes and Pajares (1984) have studied the 
large-N limit for the Coulomb potential. For a general spherically symmetric potential 
an extension of the unshifted 1/N-expansion (Mlodinov and Shatz 1984) has been 
made by Chatterjee (1986), while the shifted large-N technique (Sukhatme and Imbo 
1983) has been adopted b y  Panja and Dutt (1988), Panja et a1 (1989). 

The characteristic feature of these approaches is the conversion of the Klein-Gordon 
equation into a Schrodinger-like equation after neglecting some terms. Then one may 
apply any standard I/ N-expansion formalism in a straightforward manner. 

But, in the case of excited states, the standard methods of I/  N-expansion become 
extremely cumbersome. Moreover, the above extensions were done only with a Lorentz 
vector potential. 

In this connection we adapt an fi-expansion technique for obtaining the energy 
eigenvalues of a scalar particle in the presence of both a fourth-component Lorentz 
vector potential and a scalar one. Without neglecting any terms of the equation, it 
enables us to find the 1/ N-corrections of an arbitrary order. Derived recursion formulae 
have a simple structure not only in the case of background. states but for the excited 
states as well. 

The proposed technique is a subsequent development of the fi-expansion, applied 
recently for the (I, E)-plane analysis of the bound-state problem in the non-relativistic 
case (Kobylinsky et al 1990a, b, Korobov et a1 1990) and within the Klein-Gordon 
equation (Kobylinsky er al 1990~). 
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Method. The reduced radial part of the N-dimensional Klein-Gordon equation for a 
scalar particle in the presence of a fourth-component Lorentz vector potential V ( r )  
and a scalar potential, included in the mass term m ( r )  following the dynamical mass 
model (Gunion and t i  1975), is given by 

1 1 -  
h 2 U (  r )  = m’( r ) c 2 - ,  C [ E  - V ( r ) l 2 + 7  4r  [ k + h(  a - I ) ] [  E+ h(  a - 3 ) l )  U (  r )  ( ( 1 )  

where 6= h ( Z I + N - a ) ,  and a is some shift parameter (Sukhatme and Imbo 1983). 
Usually, the authors proceed with solving equation ( 1 )  in terms of the expansion 

parameter l / E  But actually this parameter is f i / E  Therefore we can choose the 
altemative possibility of solving this equation by a series expansion in Planck‘s constant. 

Substituting a logarithmic derivative, C ( r )  = hU’(r) /  U ( r ) ,  we rewrite equation (1) 
in the Riccati form 

+iCl(r)+ C 2 ( r )  

= (6 /2r ) ’+  m’( r ) c 2 -  ( E  - V( r ) )2 / c2  

+ hE(a -2 ) /2r2+  h2(a - ~ ) ( a  -3) /4r2  ~ ( 2 )  

which is the starting point in the method discussed. 
Through the use of the h-expansion 

m 

c ( r ) =  Ck(r )hk  
k=O 

E =  Ekhk 
k = O  

( 3 )  

( 4 )  

on comparing coefficients of various powers in h, from equation (2) we obtain 

C:(r)  = (6/2r)’+ m2(r)c2- [Eo-  V(r)]’/lc2 ( 5 )  

1 1 
C,(  r )  =- [ y, (:)’ +2 E ,  V ( r ) / c 2 - 2  E0E, / c2  - CA( r )  

2Co(r) 

where yI = 6 ( ~ - 2 ) / 2 r ; ,  y2= ( a  - l ) (a  -3 ) /4r i ,  y3 = y4=. . . =O.  
This system is solvable if we know CO(!‘), which includes the quantity E,. In the 

classical limit, h =0, the Klein-Gordon particle executes the motion along a stable 
circular orbit with the energy 

The radius r,, of this orhit is the location of the minimum of the effective potential. 
It is determined as the positive root of the equation 
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Substituting Eo, CA(rO) and CO( rO) = 0 into equation (6) we compute E,. Next we may 
find the quantity C,(r) and so on. 

But for the excited states one needs taking into account zeros of the radial wavefunc- 
tions. The fi-expansion simplifies solving this problem by permitting us to use a 
quantization condition. 

In the case of the nth radially excited state the wavefunction U(r) has n real nodes, 
so its logarithmic derivative, C(r),  has n simple poles at these points. There results in 
the quantization condition (Zwaan 1929, Dunham 1932) 

Lf C(r )d r=nf i  n =o, 1,2,. . 2wi 

This condition is exact and is widely used for deriving the higher-order corrections to 
the WKB approximation. But in the WKB approach a classical limit is carried out with 
the rule 

h+O n+m fin =constant. (11) 

f i + O  n =constant fin + 0. (12) 

Our method, being complementary to the WKB one, involves the alternative possibility' 

Hence, making use of expansion (3) it follows that 

L f C , ( r ) d r = n  27ri 

-!-f C,(r)dr=O k #  1. 
2wi 

To illustrate the application of these conditions, we consider the derivation of the 
energy eigenvalues. 

Recurrence formulae. We now put x = ( r  - rO)/rO and put the expression for CO(x) into 
another form by means of a series expansion about the point x = 0 

c,,(x) = - w x ( l  +a ,x+a2x2+ .  . .)"' (15) 

where the minus sign is chosen from a boundary condition, and 

w 2  = 3i2/4rg+2 Eo V2/c2+ c2(2m0m2+ m:) -7 (2VoV,+ V:) (16) 
1 

C 

Here the quantities V, = r: V(*)(ro)/a! and m, = r;m'"'(rO)/a! are the coefficients of 
the Taylor-series expansions 

m m 

V(r)= Vmxa m(r )=  1 m,x". 
0 - 0  0 = 0  

From equation (15) it is clear that x=O is the simple zero for the function C(x). 
Consequently, C,(x) has the simple pole at  this point, while C,(x) has the pole of the 
order of (2k-1). We then conclude that C,(x) can be expanded in a Laurent series 

m 

C,(X) = 1 cix-. 
m = 0  
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Now, with definition of the residues, we can also express the quantization conditions 
(13) and (14) in terms of the coefficients Cz as 

resCl(o)=CA=n/ro (7.0) 

k Z 1 .  (21) 
k res Ck(0)=C2k-2=0 

Unifying our notation, we rewrite the expansion (15) in the form 
m 

C0(x)=x c:xX-. 
9 = 0  

The coefficients C: are related to a, by the equations 

CO- _- 001 

2 C:= -6J I -  

' Thus, the formulae (20), (21) and (23) had already defined several coefficients Ck. 
For the remaining ones the substitution of the series (19) and (22) into equation (7) 
yields, letting LI # 2k-2, 

C:=& [ ( 

where we use the step function 

( I 3 0  
a<O' 

@(a) = 

If we let (I =2k-2,  making use of equation (7) and the quantization relations (20) 
and (21), we would derive the recurrence formulae for the energy eigenvalues. Indeed, 
if we take k = 1, there results 

But due to (18), res C,(O) becomes n / r o  which gives immediately 

On applying the condition (21), when k f 1 ,  we have 

where the coefficients C;  had been defined earlier. 
Finally notice, that the coefficients of the l/N-expansion, E = Ep'''+ %'"/[+ 

E p c 2 ) f ~ 2 + .  . . , may be deduced from the &expansion coefficients through the relation 

8'k' = (fiE)*Ek. (29) 
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Application to the Coulomb problem. The method outlined above we apply to the case 
of an attractive Coulomb potential V(r) = -p/r ,  p = ze2. Putting m(r) = m = 1, the 
solution of equation (9), when expanded in powers of 1/c2, becomes 

r - -  - :; ( I-- lpc2)’/’ =g [ -2(;)2 -2(;)4 -4(g)6+. . .]. 
Taking into account that Eo=(4pc2/E2)ro, o = 2 p / E  and Vk=(-l)kt‘P/r, we have 

40  sa‘cu -2)+24p6(u -2)+sops(U -2) +.. E, =F ( U  - 2 +p)  + 
E 5 C 2  E 7 2  E’C6 

where p = 2n + 1. 
Following Panja and Dutt (1988), we now choose the shift parameter a in such a 

manner that the non-relativistic part of expression (31) vanishes. This gives a = 2-p 
and we obtain 

8P4p 24p6p 80p8p  
k c  k 

E, =-5--,c4---- p C 6  ‘ 

E,= -_ 8p4p2 72p6p2 336p8p2 
E 1 O c 6  ”.’ k6c2 E8c‘ 

Collecting terms of the same order in l /c” ,  there results 

E = c2-_-- 
k 2  c2E4 -* c4E6 [ 4 +  24( $) +72( $)’ +. , . .] 

Our analytic result (34) reproduces the exact one (Nieto 1979) 

E = 2[ 1 +g ( 2 n +  1+ JGqg-2]-1/2 
(34) 

(35) 

if we expand it in powers of fi and 1/c2. 
It should be emphasized that the approximations derived by Chatterjee (1986) and 

Panja et ul (1988, 1989) may be easily restored from our formulae. The reducing of 
the Klein-Gordon equation to the Schrodinger-like form consists in neglecting the 
term 2( E - Eo)( V( r )  - V( ra)) in the identity 

( E  - v (  r)I2 = ( E o -  v(r))’+ ( E  - v(ra))2- (Eo-  V(ra))’ 

-2(E-&)(V(r)-  V(ro)). (36) 
Then, within our procedure, we have to drop out only the quantities 2EkV(r)/c2 in 
equation (7) and 2EkV,_2k+,/c2 in the recurrence formula (24). This results in replacing 
the term 336(pfi/E)’ by 464(~1fi/L)~ in expansion (34). Of course, the change in 
coeikienis wiii appear in ihe ietms of higher order in h and aiso iic’. From equation 
(34) it is clear that such shortening of the Klein-Gordon equation almost does not 
change its solution in the ‘quasi-non-relativistic’ case, when p is small. The marked 
difference between these solutions becomes apparent only when relativistic corrections 
become significant. The results of calculation, demonstrated in table 1, confirm this 
inference. 
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Table 1. The binding energies of n = 0, I = 3 States for a spin-zero panicle in the Coulomb 
potential V ( r )  = - p / r  within both the SchrGdinger-like and the Klein-Gordon equations, 
computed with various IlN-corrections (E'"= E , + E , + .  . .+ E,,,). The deviation from 
the exact values, defined by (351, i s  given in the percentage error. The quantity in parenthesis 
denotes the order of values, e.g., (-6) = 

The Schrodinger-like 
equation 

% error m E'" 
~ ~ 

a=: 1 0.992 141 3017 2.29 (-4) 
2 0.992 139 3256 2.93 (-5) 
3 0.992 1390717 3.73 (-6) 
4 0.9Y2 13Y 0389 4.28 (-7) 
5 0.992 1390347 3.49 (-10) 
6 0.992 139 0341 5.51 (-8) 

The Klein-Gordon 
equation 

% error E'"' 

0.992 141 3017 2.29 (-4) 
0.992 139 3260 2.94 (-5) 
0.992 I39 0723 3.79 (-6) 
0.992 1390396 4.91 (-7) 
0.992 1390353 6.37 (-8) 
0.992 1390348 8.31 (-9) 

p = 3  1 0.625 447 8197 2.72 0.625 447 8197 2.72 
2 0.611 255 1993 3.88 (-1) 0.6146209935 9.41 (-1) 
3 0.605 3242959 5.86 (-1) 0.611 008 3753 3.47 ( - I )  
4 0.602 757 6548 1.01 0.609711 8950 l.34(-1) 
5 0.601 621 0519 1.19 0.609221 5190 5.38 (-2) 
6 0.601 1094475 1.28 0.609 0286241 2.21 (-2) 

To conclude, we have developed a simple recursion formalism for any 1/N- 
expansion scheme of the Klein-Gordon equation with potentials having both vector 
and scalar components and this formalism provides, in principle, the calculation of 
l/N-corrections up to an arbitrary order both for background and excited states. 

We are grateful for useful discussions with Professor G M Zinovjev. 
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