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LETTER TO THE EDITOR

A new technique for deriving the large-N solution of
the Klein—Gordon equation

S § Stepanov and R S Tutik

Department of Physics, Dniepropetrovsk State University, Dniepropetrovsk, SU-320625,
Ukraine, USSR

Received 15 February 1991

Abstract. A new procedure for deriving the energy values of the Klein-Gordon equation
with a potential having both scalar and vector components is described. Using the h-
expansion and the quantization condition recursion formulae were obtained which can
readily be applied to any 1/ N-expansion scheme. These fortmulae have simple structures
both for background and excited states and provide, in principle, the calculation of
t/ N-corrections up to an arbitrary order. Contrary to the methods elaborated formeriy
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our technigque does not invelve converiing the initial equation to the shortened, Schrédinger-
like form. For the Coulomb potential the solutions of the Klein-Gordon and shortened
equations are compared.

The method of large- N expansion, where N is the number of spatial dimensions, has
emerged in recent years as a very useful approximation scheme in non-relativistic
quantum mechanics (for a review see e.g. Chatterjee (1990)). Several attempts have
been made to extend this method to the relativistic case within the Klein-Gordon
equation. In particular, Nieto (1979), Miramontes and Pajares (1984) have studied the
large-N limit for the Coulomb potential. For a general spherically symmetric potential
an extension of the unshifted 1/ N-expansion (Mlodinov and Shatz 1984) has been
made by Chatterjee (1986), while the shifted large-N technique (Sukhatme and Imbo
1983) has been adopted by Panja and Dutt (1988), Panja et al (1989).

The characteristic feature of these approaches is the conversion of the Kiein-Gordon
equation inio a Schrddinger-like equation after neglecting some terms. Then one may
apply any standard 1/ N-expansion formalism in a straightforward manner.

But, in the case of excited states, the standard methods of 1/ N-expansion become
extremely cumbersome. Moreover, the above extensions were done only with a Lorentz
vector potential.

In this connection we adapt an fi-expansion technique for obtaining the energy
eigenvalues of a scalar particle in the presence of both a fourth-component Lorentz
vector potential and a scalar one. Without neglecting any terms of the equation, it
enables us to find the 1/ N-corrections of an arbitrary order. Derived recursion formulae
have a simple structure not only in the case of background states but for the excited
states as well.

The proposed technique is a subsequent development of the #-expansion, applied
recently for the (I, E)-plane analysis of the bound-state problem in the non-relativistic
case (Kobylinsky et al 1990a, b, Korobov et al 1990) and within the Klein-Gordon
equation (Kobylinsky et al 19%0c).
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Method. The reduced radial part of the N-dimensional Klein-Gordon equation for a
scalar particle in the presence of a fourth-component Lorentz vector potential V{(r)
and a scalar potential, included in the mass term m(r) following the dynamical mass
model (Gunton and Li 1975), is given by

RU"(r) = (mz(r)cz—i[E - V(r)]z+$ [k+#la—-1D][k+ h(a —3)]) U(r) (1

where k= #(2I+ N —a), and a is some shift parameter {Sukhatme and Imbo 1983).

Usually, th_e authors proceed with solving equation (1) in terms of the expansion
parameter 1/k But actually this parameter is #/k Therefore we can choose the
alternative possibility of solving this equation by a series expansion in Planck’s constant.

Substituting a logarithmic derivative, C(r) = AU'(r)/ U(r), we rewrite equation (1)
in the Riccati form
KhC'(r)+ C*(r)

=(k/2rY¥+ m¥(r)c’ ~(E-V(r))}/ ¢
+hk(a—2)/2r + W’ (a—10a-3)/4r" (2)

which is the starting point in the method discussed.

Through the use of the #-expansion

C(N=75 Cudrh 3)
k=0

E= Y E.h" (4)
k=0

on comparing coefficients of various powers in #, from equation (2) we obtain
Ci(r)=(k/2r)+ m*(r)c*~[E,— V(n)F/ ¢ (5)

0

Cl(")"_‘ﬁ [')’1 (r?) +2E, V(’)/CI_ZEOEI/CZ_C(I)("):] (6)

0

1 : 1k
Ci(r) =EED(_7') [?k (%) +ZEkV(r)/c2—? Eﬁ E.E,._;

k—1
—Cin(n)- % C.-(r)Ck-:(r)] )]
=1
where v, = k(a—2)/2r3, y,=(a—1)(a=3)/413, y3=vs=...=0.
This system is solvable if we know Cy(r), which includes the quantity E;. In the
classical limit, # =0, the Klein-Gordon particle executes the motion along a stable
circular orbit with the energy

EZ 1/2
Eo= Veglro}= V(ro)+ m(fo)cz(l +W) . (8)

The radius r,, of this orbit is the location of the minimum of the effective potential.
It is determined as the positive root of the equation

E2 1/2 fc‘z
4r3m2(ro)c2] dm(ry)’

ram'(r)c’ + "ng(ro)[1+ 9
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Substituting E,, Cj(ro} and Cy(r,) =0 into equation (6) we compute E,. Next we may
find the quantity C,{r) and so on.

But for the excited states one needs taking into account zeros of the radial wavefunc-
tions. The #-expansion simplifies solving this problem by permitting us to use a
quantization condition.

In the case of the nth radially excited state the wavefunction U(r) has n real nodes,
so its logarithmic derivative, C{r), has n simple poles at these points. There results in
the quantization condition (Zwaan 1929, Dunham 1932)

—3—,3€cu)dr=nﬁ n=0,1,2,.... (10)
2t

This condition is exact and is widely used for deriving the higher-order corrections to
the wkn approximation. But in the wke approach a classical limit is carried out with
the rule

h>0 n- o hin = constant. (11)

Our method, being complementary to the wkB one, involves the alternative possibility’

fi>0 n = constant hn - 0, (12)
Hence, making use of expansion (3) it follows that

1
—_%C.(r) dr=n (13)
2w

1
-fﬁ;ck(r)dr:o k#1. (14)
27

To illustrate the application of these conditions, we consider the derivation of the
energy eigenvalues.

Recurrence formulae. We now put x = (r—ry)/rp and put the expression for Co(x) into
another form by means of a series expansion about the point x=0
Cg(x)=—mx(l+a1x+a2x2+...)"’2 (15)

where the minus sign is chosen from a boundary condition, and

_ 1
> =3k2/4ri+ 2E, V,/ &+ 2 (2mymy + m3) -2 (2V,V,+ Vi) (16)
1 3+a _ a+2 1 a+2
an=_2[(_1)a—T k2+ZEOV2+a/C2+C2 Y mma, -3 ) ‘/jva+2vj]' )
7] 4r; j=0 c” j=o

Here the quantities V, = r§ V*X(r,)/a! and m, = rgm'*)(r;)/ a! are the coefficients of
the Taylor-series expansions

(=]

V=T Vax®  m(r)= 3 mx”. (18)

a=0 a=0

From equation (15) it is clear that x =0 is the simple zero for the function C(x).
Consequently, C,{x) has the simple pole at this point, while Ci{x) has the pole of the
order of (2k ~1). We then conclude that C,(x) can be expanded in a Laurent series

Cx)=x"2" ¥ Cix" (19)
a=0
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Now, with definition of the residues, we can also express the quantization conditions
(13) and (14) in terms of the coefficients C¥ as

res C,(0)=Cl=n/r, 20
res C.(0)=C_2=0 k#=1. (21)
Unifying our notation, we rewrite the expansion (15) in the form
Colx)=x ¥ Cox" (22)
a=0
The coefficients C are related to a, by the equations
Co=-w ===

1 a—1 (23)
C? =—( ¥ CiCh_ - wzaa).
2w \j=1
Thus, the formulae (20), (21) and (23) had already defined several coefficients C¥.
For the remaining ones the substitution of the series (19} and (22} into equation (7)

yields, letting o # 2k -2,

2E
0 c
._..2k+ k-1 «a i i o
e | aetya | et 24

where we use the step function
1 a=z=0
Ola)= {

0 <0
If we let @ =2k -2, making use of equation (7) and the quantization relations (20)
and (21), we would derive the recurrence formulae for the energy eigenvalues. Indeed,
if we take k =1, there results

(25}

1 2 )
C.(x)lx_,0= "%_x['yl'lf'? EI(VD_ED)-*.;)]' (26)
But due to (18), res C,{0) becomes n/r, which gives immediately
2
¢ (2n+ l)w)
E, = + . (27}
‘u&—%x” ro

On applying the condition (21), when k# 1, we have

82

" 2(Ep— Vo)

1 P 1 %1
V== Cou2——3 L EEi
L] [ i=1

k=1 2Kk-2 262 )

E;

- Y ¥ ChCiitap=2 % CpCiiss (28)

Jf=1 g=0 B=1i
where the coefficients C} had been defined earlier. _
Finally notice, that the coefficients of the 1/ N-expansion, E = @+ €/k+
€2/k*+. .., may be deduced from the h-expansion coefficients through the relation

Y = (#k)*Ey. (29)



Letter to the Editor 1473

Application to the Coulomb problem. The method outlined above we apply to the case
of an attractive Coulomb potential V(r)=—8/r, 8 = ze*. Putting m(r)=m =1, the
solution of equation (9), when expanded in powers of 1/¢%, becomes

_.E 432)1/2 kz [ ,B 2 ﬂ)4 E 6
r0—4B(1 P ik 2(kc) 2(k.c "4(1&-) +] (30)
Taking into account that E,=(48¢*/k?)ry,,  =28/k and V. =(-1)"""'8/r, we have

88%a~2) 24B8%a-— 2) 808%(a— 2)
kS 2 + k7c4 k9 (]

482
E,=-ﬁ3—(a—2+p)+ (31)
where p=2n+1.

Following Panja and Dutt (1988), we now choose the shift parameter a in such a
manner that the non-relativistic part of expression (31) vanishes. This gives a=2—p
and we obtain

88°p_24g°p 808°p
ok Bt R
834 2 72ﬁ6 2 336BSP2
E;=— fLye [T AR (33)

Collecting terms of the same order in l/cz, there results

== im|28(5) +o(F R
g® ph ? ]
“mz&[“”“(k)”z( )+
_B8 ) Pﬁ)’ ]_
CGEE[IO‘FSO(JC +336(k S E (34)

Our analytic result (34) reproduces the exact one (Nieto 1979)

F 4 -27-1/2
E=c2[1+;:‘28‘:2(2n+1+1/(21+1)2 'BC)] (35)

if we expand it in powers of # and 1/c%

It should be emphasized that the approximations derived by Chatterjee {1986) and
Panja er al (1988, 1989) may be easily restored from our formulae. The reducing of
the Klein-Gordon equation to the Schrodinger-like form consists in neglecting the
term 2(E — Ep)(V(r) — V(ry)} in the identity

(E= V() =(Ey= V(1)) +(E = V(1) = (B = V(ro})®
—2(E - Eg)(V(r) = V(ro)). (36)

Then, within our procedure, we have to drop out only the quantities 2E,V{(r)/ ¢ in
equation (7) and 2E, V,, _si.+2/ ¢” in the recurrence formula (24). This results in replacing
the term 336(ph/k)* by 464(ph/k)* in expansion (34). Of course, the change in
coefficients will appear in the terms of higher order in 4 and also 1/ ¢?. From equation
(34) it is clear that such shortening of the Klein-Gordon equation almost does not
change its solution in the ‘quasi-non-relativistic’ case, when B8 is small. The marked
difference between these solutions becomes apparent only when relativistic corrections
become significant. The results of calculation, demonstrated in table 1, confirm this

inference.

E,=- (32)




L474 Letter to the Editor

Table 1. The binding energies of n =0, I =3 states for a spin-zero particle in the Coulomb
potential V(r}= —B/r within both the Schrodinger-like and the Klein-Gordon equations,
computed with various 1/ N-corrections (E"™ = E,+ E,+. ..+ E,,). The deviation from
the exact values, defined by (35), is given in the percentage error. The quantity in parenthesis
denotes the order of values, e.g., (~6)=10"%,

The Schrédinger-like The Klein-Gordon
equation equation
m E™ % error Etm % error
8=1 1 0.992 141 3017 2.29(—4) 0.992 141 3017 2.29 (-4}
2 0.992 139 3256 2,93 (-5) 0.992 139 3260 2.94(-5)
3 0.992 139 0717 3.73 (-6} 0.992 139 0723 3.79 (-6)
4 0.992 139 0389 428 (-7 0.992 1390396 491 (-7)
5 0.992 139 0347 349 (-10) 0.992 1390353 6.37 (—8)
6 0.992 139 0341} 5.51(-8) 0.992 139 0348 8.31(-9)
B=3 1 0.625 447 8197 2,72 0,625 447 8197 272
2 0.611 255 1993 388(-1) 0.614 6209935 9.41 (-1)
3 0.605 324 2959 5.86(-1) 0.611 008 3753 347 (1)
4 0.602 757 6548 1.01 0.609 711 8950 1.34(-1)
5 0.601 621 0519 1.19 0.609 221 5190 5.38(-2)
6 0.601 109 4475 1.28 0.609 028 6241 221 (-1

To conclude, we have developed a simple recursion formalism for any 1/N-
expansion scheme of the Klein-Gordon equation with potentials having both vector
and scalar components and this formalism provides, in principle, the calculation of
1/ N-corrections up to an arbitrary order both for background and excited states.

We are grateful for useful discussions with Professor G M Zinovjev.
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